Involvement of cGMP-dependent protein kinase in adrenergic potentiation of transmitter release from the calyx-type presynaptic terminal.

نویسنده

  • H Yawo
چکیده

I have previously reported that norepinephrine (NE) induces a sustained potentiation of transmitter release in the chick ciliary ganglion through a mechanism pharmacologically distinct from any known adrenergic receptors. Here I report that the adrenergic potentiation of transmitter release was enhanced by a phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) and by zaprinast, an inhibitor of cGMP-selective phosphodiesterase. Exogenous application of the membrane-permeable cGMP, 8-bromo-cGMP (8Br-cGMP), potentiated the quantal transmitter release, and after potentiation, the addition of NE was no longer effective. On the other hand, 8Br-cAMP neither potentiated the transmitter release nor occluded the NE-induced potentiation. The NE-induced potentiation was blocked by neither nitric oxide (NO) synthase inhibitor nor NO scavenger. The quantal transmitter release was not potentiated by NO donors, e.g., sodium nitroprusside. The NE-induced potentiation and its enhancement by IBMX was antagonized by two inhibitors of protein kinase G (PKG), Rp isomer of 8-(4-chlorophenylthio) guanosine-3', 5'-cyclic monophosphorothioate and KT5823. As with NE-induced potentiation, the effects of 8Br-cGMP on both the resting intraterminal [Ca2+] ([Ca2+]i) and the action potential-dependent increment of [Ca2+]i (DeltaCa) in the presynaptic terminal were negligible. The reduction of the paired pulse ratio of EPSC is consistent with the notion that the NE- and cGMP-dependent potentiation of transmitter release was attributable mainly to an increase of the exocytotic fusion probability. These results indicate that NE binds to a novel adrenergic receptor that activates guanylyl cyclase and that accumulation of cGMP activates PKG, which may phosphorylate a target protein involved in the exocytosis of synaptic vesicles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic mechanism for phorbol ester-induced synaptic potentiation.

Phorbol ester facilitates transmitter release at a variety of synapses, and the phorbol ester-induced synaptic potentiation (PESP) is a model for presynaptic facilitation. To address the mechanism underlying PESP, we have made paired whole-cell recordings from the giant presynaptic terminal, the calyx of Held, and its postsynaptic target in the medial nucleus of the trapezoid body in rat brains...

متن کامل

Presynaptic cGMP-dependent protein kinase-I mediates synaptic potentiation in spinal amplification of pain

Background Activity-dependent facilitation of pain is functionally linked to plasticity at synapses between peripheral sensory afferents and spinal projection neurons. However, the underlying cellular and molecular mechanisms are not well-understood [1]. We observed that long-term potentiation at these synapses involves a presynaptic mechanism comprising activity-induced decrease in synaptic fa...

متن کامل

cAMP-dependent long-term potentiation of nitric oxide release from cerebellar parallel fibers in rats.

Nitric Oxide (NO) is released from parallel fibers (PFs) after PF stimulation. NO-cGMP signaling is essential for long-term depression (LTD) in cerebellar PF-Purkinje cell synapses, which also exhibit presynaptic long-term potentiation (LTP) after tetanic PF stimulation. This LTP is dependent on cAMP but not NO-cGMP signaling. In this study, we analyzed long-term changes of NO release from PFs ...

متن کامل

Activation of the epsilon isoform of protein kinase C in the mammalian nerve terminal.

Activation of protein kinase C (PKC) by phorbol ester facilitates hormonal secretion and transmitter release, and phorbol ester-induced synaptic potentiation (PESP) is a model for presynaptic facilitation. A variety of PKC isoforms are expressed in the central nervous system, but the isoform involved in the PESP has not been identified. To address this question, we have applied immunocytochemic...

متن کامل

Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release

Transmitter release at synapses is regulated by preceding neuronal activity, which can give rise to short-term enhancement of release like post-tetanic potentiation (PTP). Diacylglycerol (DAG) and Protein-kinase C (PKC) signaling in the nerve terminal have been widely implicated in the short-term modulation of transmitter release, but the target protein of PKC phosphorylation during short-term ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 13  شماره 

صفحات  -

تاریخ انتشار 1999